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a geometric constraint, then a slight modification of the procedure presented above en- 
sures the stable encounter of all approximation motions 5~ [t] with the e-neighborhood 

of set L?!* by the instant 6 denoting an arbitrarily large quantity. 

The authors thank A. I. Subbotin for constant attention to this article and for valuable 
advice. 

1. 

2. 

3. 

4. 

5. 

REFERENCES 

Krasovskii,N.N., A differential game of encounter-evasion. I, I I, Izv. Akad. 

Nauk SSSR, Tekhn. Kibernetika, Nos. 2 and 3, 1973. 

Malkin, I. G. , Theory of Stability of Motion. Moscow, “Nauka” , 1966. 

Krasovskii, N. N. and Subbotin, A. I., Position Differential Games. 

Moscow,“Nauka”, 1974. 

Reshetov, V. M., On a linear differential game of evasion. PMM Vol. 38, N” 4, 

1974. 

Subbotin, A. I. and Ushakov, V. N., Alternative for an encounter-evasion 
differential game with integral constraints on the players’ controls. PMM Vol. 

39, N”3, 1975. 
Translated by N. H. C. 

UDC 62-50 

SYNTHESIS OF TIME-OPTIMAL CONTRClf, OF A THIRD-ORDER OBJECT 
WITH A PHASE CONSTRAINT 

PMM Vol. 40, N: 3, 1976, pp. 446-454 

V. G. GETMANOV and B, E. FEDUNOV 

(Moscow) 
(Received June 23, 1975) 

We examine a problem, arising in engineering practice, of the time-optimal 

control of a third-order linear object with a constraint on the control and on the 

phase coordinate . The synthesis of the control is described. 

1. Statement of the problem. The following problem arises in the com- 

bined operation of two measuring devices tracking a moving object, each of which can 
track only in a certain part (action zone) of the space of measurements, From the infor- 
mation on the object obtained by the measuring device of the leaving zone, organize 
maximally quickly the tracking by the measurment device of the entering zone. For a 
number of measuring devices the dynamics of the tracking organization process can be 
described by a system of linear differential equations with constant coefficients and with 
constraints on the control u and on the phase coordinate (the action zone of the measur- 

ing device) 

u < u < u, x2o2 --x.ts < 0 (1.2) 

The control U” (t), ensuring the satisfaction of condition (1.2) and translating the object 
(1. 1) in a minimal time tr from a specified initial point x1 (0) = XI*, ~2 (0) = 
x2*, x3 (0) = x*~ (the initial position of the measuring device) to a specified final 

point x1 (Q) = 0, xs (tr) = Q (the condition for tracking to commence), is assumed 
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to be optimal. In the problem being investigated it is of interest to synthesize the opti- 

mal control ensuring the system’s operation for each fixed set of parameters T, U, x20 
(from the sets T > 0, U > 0, ~2~ > 0) under arbitrary coordinates of the initial 
point and arbitrary values, constant in time, of the parameter Q. 

2. Properties of the optimal control. From the maximum principle [l] 

it follows that if 

H = %(Q -%)fWQ+++~Jg+~) -$@28--202) 

1 = cc& + Cl Lx1 (0) - q*1 + c, 152 (0) - x2*1 i 

c, [x2 (0) - r,*J + c&q (q + c, h, (q) -Ql 

a?, >o, g > 0, s [22o2 -(22"(t))2] = 0 

for arbitrary constants Ci, i = 1, 2 . . , 5 , then the adjoint variables satisfy the 

equations 
-+o, $1(O)=C1, $1&)=-C, 

dllr2 --= 
dt 

- 2z2(t)$ $2(O) = c2, $2@f) = 0 

d% --= 
dt --%+lclz- +!3, 93 (0) = c3, 93 (G) = ccl 

-$=o, $t(O)=O, q,,(q)= -c$/ 

Hence 
91 (9 = 91 (O), Cl = - c* 

dz(t)=Ipa(O)+S22,0(~)~dr 

93 (t) = 193 (0) +;$I (0) - $2 (0)) 1’1 ei’T - 

[~l(0)-~2(O)]T-et~~~e-~~T~2s,“(~) dp 
; 

~dL.d~ 
0 

qt (t) = con&, a, = 0 

(2.1) 

The optimal control is determined by the expression U” (t) = U sign 93 (t)_ 

It is convenient to investigate the problem being examined, which belongs to the type 
of problems studied in [2], in the coordinates 

yl = x3 - x1 I T, y, = x3 - Tu’, y, = x2 + TX, 

In the new variables we obtain 

Y, (0) = 23 (0) - x1 (0) / T, ~3 (0) = ~2 (0) + 593 (0) (2.2) 

~23 = x3 (0) f TU for U” = r U 

dyl=U_ i 
dt I + $_$, $=TU (2.3) 

y, = C exp [- y1 (TU - Q)-‘I, y, = C exp [- y, (T2U)-ll> (2.4) 

(u = const) 

(~3 + ~2 > (~3 - 520) T-l f TU (2.5) 
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for the two possible values u” = -+ u . Here (2. 2) gives the values of the coordinates 
of the initial point,(2.3) is a system of differential equations (with due regard to the 

substitution made) and (2.4) gives the equations of the phase trajectories. We partition 

the domains of parameters in the following manner: 

a) Q > 0, Q < 0, (b) TU - J 62 1 3, TU - 1 52 J < 0, 

cl x2,, > T2 U, cczo < T2U. 
The analysis in Sects. 2 and 3 is carried out for the combination 52 > 0, TU - Q > 

0, x20> T2U. 
2.1. If the optimal control is such that du / dt s 0, then it coincides with the con- 

trol for the corresponding time-optimal problem without phase constraints. From (2. 1) it 

follows that the optimal control is a piecewise-constant function having no more than 

one switching. A complete representation of the system’s optimal motion can be obtained 

from the phase trajectories in the plane {yr, yz}. 
Figure 1 shows individual phase trajectories (2.4) corresponding to the controls 211. 

We note that a change of sign of the control leads to a jump of the phase point by the 

amount k 2TU with respect to the coordinate y,. We can hit the final point y, = Q, 
y, = Sd +- TL’ by moving along a trajectory with the control u = 7 U passing through 

it (the solid parts of curves fr (yr) and fi (y.J). If the phase point corresponding to the 

initial state of the system is located on such a trajectory, then the system is translated 
to the final state without a change in sign of the control. Otherwise, the control’s sign 

has to be changed at such a point of the plane {::i, yz} that the jump from it with res- 

pect to coordinate y, of magnitude + 2TC ensures falling onto the trajectory determined 

above. The locus of switching points is shown in Fig. 1 by dashed curves. The functions 

y, = fi (yr) and yz = fi (~1) are determined by the relations 

&ZTU+(B-TU)exp[ &--i’;], yr<Q (2.6) 

(Q + TU) exp C - :U-+yi , 1 yl>Q, fz=f1---7’lJ 
2.2. If the optimal control is such that dp J dt + 0, the phase constraint is an es- 

sential one. From Eq.(l. 1) we see that the system can be situated on it (x22 (t) = xzO”) 
in the course of some nonzero time interval only when xs = 0 and U” = 0. Such a 
state is shown on the plane {yz, ya ; by the points (&TU, fx,,) and (0, 35%) 
subsequently called the rest points 11, and n2 (Fig. 2). When the system is situated at 
a rest point (U = 0) we have the following pattern of the motion, In the coordinates 

{y2, ys} the point remains fixed: y2 = 0 and y, = f x2,-,. In the coordinates {yr, 
y2} the point moves in accordance with the equations 

~1 (t> = ~1 (GJ - QT-l (t - GJ, Y2 (0 = 0 

where t, denotes the instant at which the trajectory goes out onto the phase constraint. 
We note that in the plane {ya, y,} the control process termination point z1 (tr) = 0, 

5s (tf) = 52 must lie on the straight line y, = Q - T U when the process terminates 
with u0 = + U and on the straight line y, = 61 + TU when the process terminates 
with U” = - U. The phase constraints (2.5) are zones bounded by the parallel lines r, 
and I’, (l’, and I’,), forbidden to the trajectories with controls i-0‘ (--U) (Fig. 2). 

When the phase constraint rr is approached with U’ = + U a trajectory exists 
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tangent to l?r at the point 

(~2 = - TV., y, = +,} : h, = - TUexp (zzo - y3) (TaU)-’ 

The tangency occurs at a rest point. The phase trajectory with u” = + U cannot go 
into the points of boundary I’i with coordinates y, > zzO but in principle it is possible 

for the trajectory to go into the points with coordinates y, ( zss . However, in the lat- 

ter case the phase constraint is violated whether u” preserves or changes its sign. When ra 
is approached with 1~’ = - U the corresponding trajectory is tangent to ra at the point 

{yz C-r. I’G, y3 = - qo} : h, = TO exp (x2,, + y3) (T2U)-l 

The phase trajectory with U” = - U cannot go into the points of boundary ra with 

coordinates ys < - x2,, , but in principle it is possible for the trajectory to go into 

the points with coordinates y3 > - “so. However, in the latter case the phase con- 

straint is violated whether u” pre!.erves or changes its sign, 
Let us consider other possibilities of going onto the phase constraints. Going onto con- 

straint I’, with u‘l = -1-U is possible at any point. To prevent a violation of the phase 
constraint at the instant of going out, the control must change sign. The phase constraint 

is violated when going onto Iz at point with coordinates bra > -zzo , but it is not vio- 

lated when going into points with y, < -zao , The integral summand in the expression 

for 99 (t) is positive when going into the point y3 = -zao . Therefore, the trajectory 
can remain on the phase constraint at this point (u” = 0) when the nonintegral summand 
becomes negative at the instant of going onto the constraint, 

Thus, going onto the boundary r2 must always be accompanied by a switching of the 

control or a stopping of the process. In the first case the successive section of the tcajec- 
tory with 7.4” = - U is the last one and must arrive at the required final point, i.e. 
on the line y, = S2 + T U (Fig. 2). After the switching the phase point on the plane 
{yz, y3} is located below the optimal line and cannot hit onto it with the control 

u” = - u. Therefore, the required optimal trajectory must not go onto the phase con- 
straint. An exception is the phase trajectory which hits the final point (on the straight 

line y, = 62 - TO in the plane {y2, y,]) as it goes onto r2 . 
Analogously, as Ia is approached with u0 = + U the phase point can stay on the con- 

straint only at zzO. For this it is necessary that $3 (t) = 0. If the integral summand in 
the expression for q3 does not equal zero at this point, then it is negative ; the noninteg- 

cal summand must change sign at the instant of going out. However, in this case, after 

coming off the constraint dp / dt E 0 the quantity *3 (t) becomes negative, i.e. the 
phase constraint is violated. Therefore, the coming off is possible only with u0 = --U, 

which in its own turn can be implemented only when dp / dt 3 0. 
Thus, when I1 is approached with uQ = + U the phase trajectories pass the point II, 

with dp / dt 3 0. Going onto constraint l‘, with u0 = -U is possible at any point. To 

prevent a violation of the phase constraint a switching must take place at the instant of 
going out: a change of control form ZP = -U to u0 = _t U. When going onto Ts at 
points with coordinates y3 < zae the phase constraint is violated. It is not violated when 

going into points with Y3 > GO. When going onto the point ~3 = Eao the integral sum- 

mand in the expression for q3 (t) is negative. Therefore, the trajectory can remain on 
the phase constraint at this point (II = 0) when the nonintegral summand becomes posi- 
tive at the instant of going onto the constraint. 
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The going onto the phase bounda~ I’s must always be accompanied by a switching 
of the control or a stopping of the process. In the first case the successive section of the 
trajectory with UP = + U is the last one and must arrive at the required final point, 
i ,e. on the line ys = &? -TU.This is realized when the trajectory with U” = - u 

goes onto the phase constraint I’,: if the point of going out is situated on the segment 

[K,, K,] (Fig. 2)‘ We note that the quantity dp f dt z/z 0 when going into point KS, 
Going into points of rs, located above K lr leads to the phase point being located above 
the line a - TCr after Me switching and not being able to hit onto it with the control 
u” r= +. i-J * 

Let us investigate the case when the ~on~ntegra~ ~ummand in the expression for 9s (z> 

equals zero, This is possible when 9s (0) .+ 19, (0) - 9s (())I T = 0 and & (0) - 
9% f@ = 0. However, N :‘= @, (0) (Q . us) -]-- 9s (0) 2s must be satisfied on the 
initial segment, i, e. $r (0) --= $ (0) = 8. Recalling the requirement & (tr) f= 0, 
we conclude (2.11 that d&r / dt = 0. The case of the vanishing of the ~on~ntegra~ term 

leads to the consideration of the degenerate case when 

11 dp / df 11 = 0. 
Ij$ll _t 11 I&, jj i_ /I I& 1 1”_ 

2.3. The set of initial states has four characteristic domains A$, k = 4, 2, 3, 4, 

all of which we could not successfully depict graphically in Figs. 1 and 2. The first do- 
main (yi (0)) E 8, admits of control without going onto a constraint. For the second 
domain {yi (0)) E S, the initial conditions are; (a) it is impossible to find a control 

which, in view of its boundedness, could ensure the nonviolation of the constraint (the 

zone between the straight line _Vs and the tangent trajectory yr = hs -i-_ 2TU raised 
by an amount 2TU with respect to the &-axis); (b) the magnitude of control U 

proves to be sufficient for falling into the final state with one switching (the zone bet- 

ween the straight line r3 and the trajectory 7% = (a + ffti) esp [ - (q,, -/- QT - 
?.h)j (T2 tr)-I. A na o 1 g ous Zones can be also determined for the boundary f’s, Domarn 

S, is defined by the inequalities 

[ys (0) =F Xs*l T-r -+ TO- > (<I @a > (C)(Q f F@%x (2.7) 

exp f- “2s -b fZT * y, (O)f (~2~~-~ 

1~3 (0) q= x2,,? T-l t_ TU >, (.<.) YT~> (0 3TU ‘f TU x 
exp b,, T us @)I (T2U)“I 

Here the inequality signs within the parentheses correspond to the lower plus or minus 

signs, 
The initial states (.Yi (0)) E s s are such that it turns out to be possible to find a 

control, ensuring a ~on~olat~on of the co~train~, by proc~edi~g from the necessary eon- 
ditions of the maximum principle (in the case being examined 

dt = 0). If {y; (0)) E 31, s, st 

qs (t) Z@ 0 and cllr / 
then such initial conditions belong to the fourth do- 

main 8, and correspond to the degenerate case. The initial conditions from which tra- 
jectories are constructed, passing through the rest point Ef, , belong here. 

3, Synthsrlr of the 00ntro1, The synthesis consists in determining the mem- 
bership of the initial conditions in one of the domains S, listed and in indicating the 
sequence of sign changes of the control as a function of the phase state, Let US consider 
the synthesis of the optimal control for a problem without phase constraints. FFOm Fig. 1 

it follows that if the initial phase point (gr (0), yw2 (0) } of system (1.1) is located 
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below the curve ys = fl (ylJ, then the optimal control is u” = - U from the ini- 
tial point up to the line l- 2 with a subsequent switching on it and with a motion 
along the line 4 - 5 up to the final point. If, however, the initial phase point {yr (0), 

y,+ (0)) is located above the curve y, = fa (yr), the optimal control is U’ = -k 0 

from the initial point up to the line 5 - 6 with a subsequent switching on it to u” = 

- U and with a motion along the line 2- 3 up to the final point. We note that both 

points {YI (O), YzT (0)) cannot be simultaneously situated between the lines y, = 
fr(a) (yi) . Consequently, the above-mentioned rule enables us to choose the optimal 

control uniquely in the problem without phase constraints. We can find the values ofthe 

aordinates y2 [&,*:I = g [y, (0), y2f (O)l, f or which the switching of the control takes 
place (by solving Eqs. (2.4) and (2.6) simultaneously). The time for passing from the 
initial point to the point where the switching of the control takes place equals t,f = 

T 1~1 y2 (0) y-l2 [t$l. We find Y3 [@t] = y3 (0) f TlJt&. 
3.1. If even one of the inequalities 

2TU - TU exp tczz20 - y3 (tp)J (T2U)-l > g [yl (0), yt- (0)l (3.1) 

Y3 (t)P-) < Go 

1~3 (tp-) - ~~~1 T-l j- TU > g [yl (0), Yz- (0)l 

520 6 ~3 (b-j < 520 + QT 

Q -+ TV > F [YI (01, yz- Ml, ~3 (b-) > ~2, 3- QT 

Q +- TU > g [yl (0), y,- (O)] > 2TU + (Q - TU) exp [QT - 

~0 - ~a (b-)1 (TW-l, ~31 < ~3 (b-) G 520 + QT 

Q + TU > g [YI ((09 Y,- (0)I > TU + 1~3 (b-) + ~201 T-: 

Y3 (G-) -c Y31 

2TU ;- TU expb,,--+ y, (b+)l (T2W1 G g [YI (O), y2+ (ON 

Y, (b’) > QT - ~2~ 

Q - 2’1: > g Iy1 (0), y,+ (0)l > - 2TU + (52 + TUjx 

exp[y, VP+) - QT - ~~~1 (T2U)5 z20 + QT d y3 (tp+) <Y,, 

Q - TC’ i g [YI (01, ~a+ (O)l, Y, (tp’) < 0~’ - ~0 
Q - Tlr > g lyl (0), y2+ (0)l > Ly3 (tp’) - ~2~1 T-’ + TU 

Y3 (b’) > Y,, 

is satisfied, then {yi (0)) E S, and the synthesis can be effected without going onto 
the constraints, by the rule indicated above, Here y,, and y32 are the roots, largest in 

modulus, of the equations 

(9 - TU) exp b~2~ + QT - ~311 (T2U) = (~31 + ~20) T-’ - TU 

(B + TU)exp (x3:20 + QT - y3n) (T2U)-l = (~30 - y32)Tl + TU 

3.2. Solutions do not exist for initial conditions belonging to domain S,, and satisfy- 

ing inequalities (2.7). 
3.3. The initial conditions on the plane {ys, y3} , belonging to 83, satisfy the equa- 

tion yz- (0) = TU exp [y3 (0) - ~3~1 (T2UP 

The inequalities 
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(TU - St) exp [yl (0) - ylll (I’U + sZ)-l > y2- (0) > TU 
Yll \( Yl (0) < y127 y21> y2- (0) > TU, ~12 < YI (0) 

where YIN, y12, .yql are determined from the equations 

Yll = Q + (TU - 52) In TU (TU - fd)-I, TU In TU (y21 - 
2TU)-l = y,, - TU, yl, = yll - (TU - 8) h y2] (TV 

must be satisfied on the plane {yr, Y2 } . The synthesis is effected in the following 
manner: the conditions in Paragraph 3.3 for membership in domain S, are verified ; 

the control at the first stage is always negative: u” = - U until tne system reaches 
the constraint with respect to z2 with zero velocity (point 11,); during the time At, = 

(yzz - Y,,) TQ-l, ~22 - y1 (0) -+ (T U + 52) In T U [ y,- (0)1-l the system stays 
on the constraint with zero control and later it is switched to UO = $ U which brings 

the system to the final state. 

3.4. Initial positions, not belonging to the three domains mentioned, belong. to ,S, and 

correspond to the degenerate case. The following arguments can establish the form of 
the control here. The system’s trajectories consist of three segments: going onto the con- 
straint I‘, at the rest point 11, without falling into the forbidden domain Se, remaining 

at point II, for some time and the time-optimal coming off the phase constraint and 
going into the required final conditions, The total time of motion must be minimal. If 
t, is the instant the system comes off the constraint and no longer returns to it, then, 

proceeding from the requirements of time-optimality and of falling into the required 

final conditions, the optimal control is u” = + U on the last segment during the time 
At, = tf - t, (we have in mind the motion from n, to the line Q - TU). The re- 

lations 
53 (tf) = Q, 53 (k) = 0, Atf = T In TU (TU - 52)-l 

are valid. 

The value x2 (tf) is determined from the condition x2 (&) 7 $0 

~2 (tf) = xzO -t T2UIn TU (TU- Q)-l -I- T (TU - Q) (3.2) 

With due regard to (1.1) and (3.2) we get that the maximum time-optimal duration is 

tj = [x2 (tf) - 51 (0) - x*,10-1. By the instant & the control must bring the object 

to the state 

rr (te) = 22 (tf) - a+,,, - QAt,, xg (t,) = x2o, x3 (t,) = 0 (3.3) 

On the plane { ye, y,} this state is located on r1 with the coordinates { z2,,, Q -_ TU} , 
On the interval 0 < t < tc the control must be such that the system does not fall into 
the forbidden domain 3’a 

{Yi CT)9 0 < z < tc} r) s, = 0 (3,4) 

The optimal control on the segment [O, t,l, necessarily satisfying conditions (3.3) and 
(3.4), is not unique. 

In fact, the relation t, - t, = Atb > 0 must be satisfied for the minimal time t, of 
translation of the point Yi (0) E S, onto boundary I’, at the point {qO, 62 - TUJ . 

Obviously, infinite number of controls exist in the time interval At, , translating the ob- 
ject from the phase point yi (Im) to Yi (tC). By virtue of this there exists a set of controls 

translating the object from S, to the final point. 
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Fig. 1 Fig. 2 
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Therefore, in practice, the synthesis can be effected as follows. The system is trans- 
lated from the initial point to a rest point with one switching of the control; the system 

remains on the constraint during the time At, = Is, (tb) - xl (t,)] C!-l ; later, the 

control is switched to ZL” = + U which translates the object to the final state. Figure 

3 shows the block diagram of the optimal control synthesis circuit. 

Control in the closed loop is effected in the following way, The membership of the 

initial conditions to domains Sk, k = 1 -3 , is verified in blocks I - 4 by formulas 

(3. l), (2.7) and the formulas in Paragraph 3.3, respectively. If { Yi (0)) s Slr2,3, 
then the initial conditions belong to 8, (block 5). When the membership conditions have 
been satisfied, the appropriate switches are closed, which transfer the circuit into a closed- 

loop state (the remaining switches are open). For S, the control is carried out along the 
switching line; for S, and S, the control signal is formed in blocks 6’ and 7 where 
the value 0 or u is conferred on the quantity 2, when any of the following conditions 

is satisfied : 
for block 6’ 

a) U sign u” (t) - QT-l CO, y,, - yl < 0; u = 0; (b) Y,, - 

Y, = 0; 2, = u; (c) u sign u” (t) - QT-l > 0, y,, - y, < 0; 
v = 1~ 

for block 7 

a) Ya+ < TU, Y,, - y,< 0; 2' = 0; (b) y,, - y, = 0; v = u; 

c) Yzf > - TU, YII - y, < 0, 2’ = u 

4. Solution for arbitrary 8, TU, x,,. We see that when 62 ( 0,TU > 
I Q I and xzo > T2U the realization of the rest point with a subsequent satisfaction 

of the right-end conditions is possible if the coordinate of the rest point with respect to 

y3 takes a negative value. The whole structure on the plane {Ys, Ys} becomes sym- 

metric relative to the origin. The case TU < [ 52 [ (52 > 0, Q < 0) has no physical 
meaning since under such a condition the coordinate 5s (tf) cannot take the value 52. 
If T U < 52 = 0, then the problem does not have a solution when x2 (0)-k x1 (0) < xto ; 
the analysis in Paragraphs 3.1 and 3.2 remains valid in other respects. The mutual psi- 
tion of the strips (2.5) is determined by the relation of the quantities x2,, and TaU. If 
x2,, > TaU, the strips have a common part. The case xaO < T”U (the strips do not 

have common parts) can be considered similarly. 
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